
Going serverless with AWS

Agenda
What’s Serverless

Why Serverless, part 1

Example, tools and what to expect development-wise

Why Serverless, part 2

Why not Serverless

Patterns for the Serverless approach

My definition: lack of a persistent application server

What’s Serverless

Application server MAY do:

● Request handling
● State management
● Security & Auth

-entication -orization

What’s Serverless

What’s Serverless

Build an ‘application server’ from
components The Cloud provides:

● Controller? - API Gateway
● Auth? - Cognito?
● State? - ElastiCache

Know ‘The Cloud’s capabilities,
you’ll have to stitch them together

What’s Serverless

Ref: Application Lifecycle Management in a Serverless World
● Simple but usable primitives
● Scales with usage
● Never pay for idle
● Availability and fault tolerance built in

https://pt.slideshare.net/AmazonWebServices/application-lifecycle-management-in-a-serverless-world

Why Serverless, part 1
For now.. it’s cheap, see * ? https://aws.amazon.com/lambda/pricing/

We’ll see more of ‘why’ later

* unless you follow some anti-patterns

https://aws.amazon.com/lambda/pricing/

Simple (and somewhat stupid) example
“Memoisation”

Given a batch of work to be done, compute and store the result.

{
 "ops": [
 {"name": "1_plus_1", "op": "1+1"},
 {"name": "2_by_2", "op": "2*2"}
]
}

1_plus_1 -> 2
2_by_2 -> 4
...

->

Simple example

Simple example - the infrastructure
With the serverless toolkit:

...
 compute:
 handler: serverless_hello/worker.compute
 events:
 - existingS3:
 bucket:
${self:provider.environment.PROC_BUCKET}
 events:
 - s3:ObjectCreated:*
 rules:
 - suffix: .work
...
See the full serverless.xml file

Have to declare:
● Infrastructure resources (eg. S3 buckets)
● Event handlers (HTTP, S3 .. lots and lots)

Why this makes sense: your application is not ‘just code’ !

https://serverless.com/
https://github.com/QCatalyst/ro-python-serverless/blob/master/serverless.yml

Simple example - the code
Write handlers code:

...
def start_work(event, context):
 """ starts work on a series of tasks;
 each line in an input file becomes a task,
 a file of its own in a separate bucket
 """

 in_work_s3_object = get_object_from_s3(WORK_BUCKET, 'work.json')
 ops_bulk = in_work_s3_object['Body'].read().decode('utf-8')
…

See the full source

All lambda functions take a context and event
(a dict) parameters

https://github.com/QCatalyst/ro-python-serverless/blob/master/serverless_hello/worker.py
https://docs.aws.amazon.com/lambda/latest/dg/python-context-object.html

Simple example - the testing
Unit tests - the usual

Integration tests:

- start a local environment (that emulates AWS services) or,
- deploy to AWS (preferred)

Note how you can deploy to any number of environments - every dev may get
their own!

https://github.com/QCatalyst/ro-python-serverless/tree/master/tests
https://github.com/QCatalyst/ro-python-serverless/blob/403accb2d6688e95a9fc642e48d4764195d8cdec/serverless.yml#L38

SDLC highlights
● Have to understand ‘The Cloud’ and its services
● Have to think your application’s architecture to be ‘event-driven’
● Testing - just feels ‘different’ with limited capabilities to run locally

Why Serverless, part 2
Small operational costs
...is mostly managed by ‘The Cloud’

It’s quick for a small (web) service / app
...and you might design your big app as a collection of small services

Less to worry about infrastructure
...is mostly managed by ‘The Cloud’

Small operational costs
...is mostly managed by ‘The Cloud’

Availability built-in
...is mostly managed by ‘The Cloud’

Why not Serverless

Vendor lock-in & control
‘The Cloud’ drives how infrastructure and base services work

Testing
No very good tools for running locally - how to do stubs, tear-up, tear-down..

Debugging
Have to rely pretty much on what ‘The Cloud’ provides

There’s progress on improving on all of these!

Eg. https://github.com/thoeni/aws-sam-local

https://github.com/thoeni/aws-sam-local

Patterns for the Serverless approach
API stitch-up job, thick UI

Patterns for the Serverless approach
Experiments

Patterns for the Serverless approach
Data Processing Pipes (suitable because event-driven support)

Serverless Anti-Patterns
 Server-as-a-function

All your application as a single function, see zappa
● Start-up time will be big
● It’s not going to be cheap anymore

Too many, too granular functions
● Hard to manage (eg. version deps) and monitor
● Excessive communication

Functions calling other functions
● Won’t be cheap anymore
● You’re blurring the line between many domains of

concern - think about error and scaling isolation
● Functions should do one thing only!

Long-running functions
● Won’t be cheap anymore
● There’s a ‘timeout’ - 5 min

..and anything that is getting close to an established limit
See https://docs.aws.amazon.com/lambda/latest/dg/limits.html

https://github.com/Miserlou/Zappa
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Should I learn it?
Yes, give it a try - it will only evolve in adoption, because of business value:

● Small operational costs
● Fast time-to-market (see ‘patterns’, stitch-up jobs are very common when

everything has an API)

https://www.monkeyuser.com/2019/yagni/

AMA

Where’s the sample code? https://github.com/QCatalyst/ro-python-serverless

How to get started?

Other mentionable tools? Eg. https://github.com/aws/chalice,
https://github.com/localstack/localstack

https://github.com/QCatalyst/ro-python-serverless
https://github.com/aws/chalice
https://github.com/localstack/localstack

